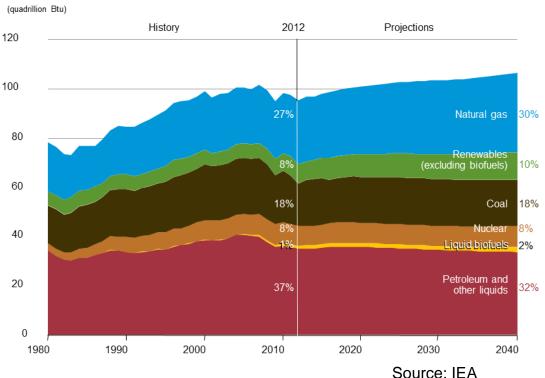


Dialog 0047/2016

1st Forum Dialogu Nauka - Przemysł Warszawa, 9 – 10 października, 2017

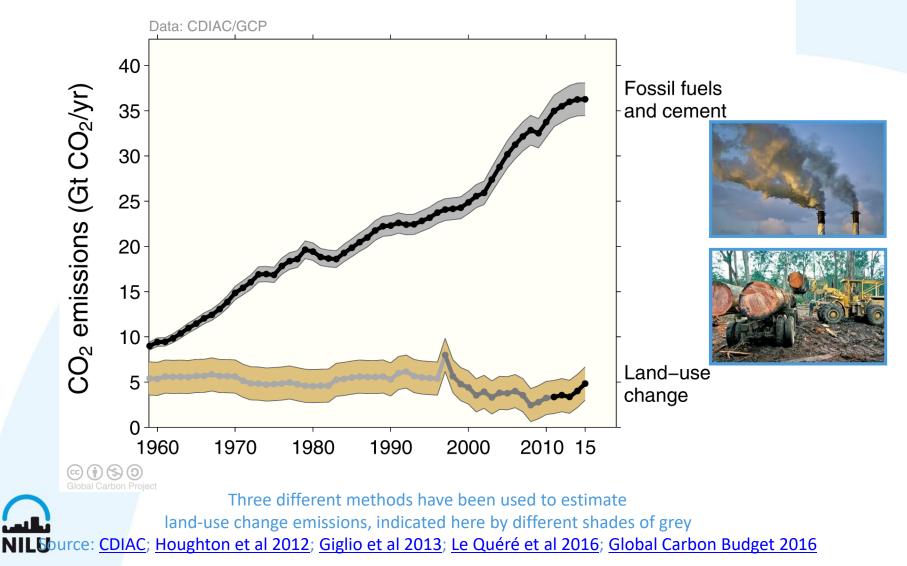
Środowiskowe aspekty implementacji innowacyjnych technologii energetycznych

Józef M. Pacyna, Wojciech Nowak i Elisabeth G. Pacyna, NILU – Norwegian Institute for Air Research, Kjeller, Norway AGH University of Science and Technology, Kraków, Poland



Background

- Fossil fuels will remain important in the future
- CCS will aid the global transition to a sustainable low-carbon economy by capturing CO₂ and reducing carbon footprint


Source: The Telegraph, 21th of April, 2009. Photo: GETTY

US Primary energy consumption by fuel type

Total global emissions: $41.9 \pm 2.8 \text{ GtCO}_2$ in 2015, 49% over 1990 Percentage land-use change: 36% in 1960, 9% averaged 2006-2015

Fate of anthropogenic CO₂ emissions (2006-2015)

CARBON

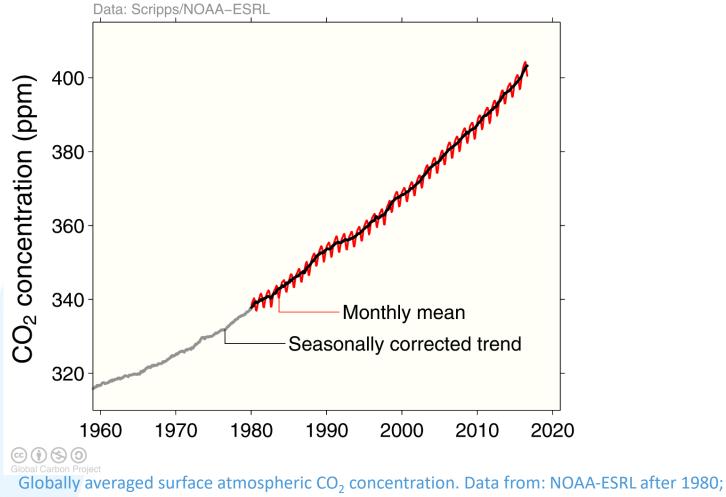
GLOBAL

34.1 GtCO₂/yr **91%**

Sources = Sinks

9% 3.5 GtCO₂/yr **31%** 11.6 GtCO₂/yr

26% 9.7 GtCO₂/yr

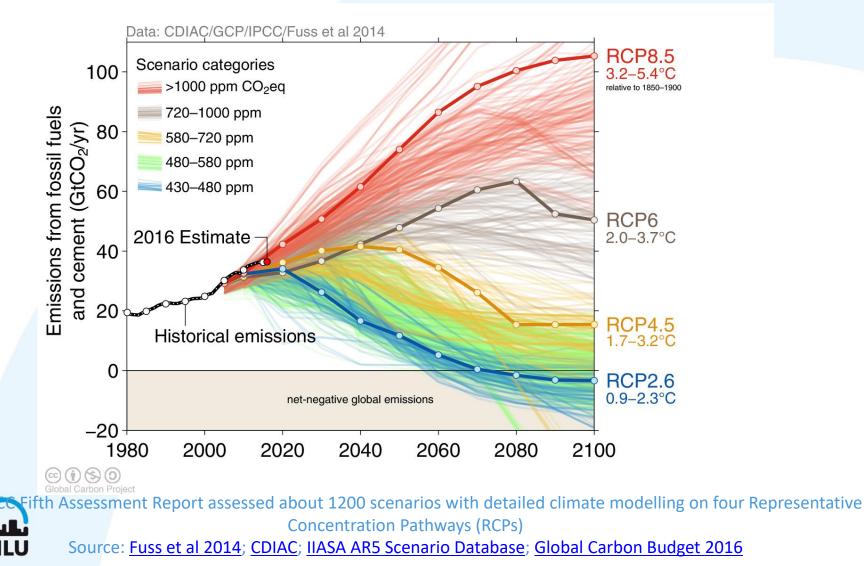

Solica CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016

Atmospheric concentration

GLOBAL

CARBON PROJECT

The global CO₂ concentration increased from ~277ppm in 1750 to 399ppm in 2015 (up 44%) 2016 will be the first full year with concentration above 400ppm


Solution: NOAA-ESRL after 1980; The Scripps Institution of Oceanography before 1980 (harmonised to recent data by adding 0.542ppm) **NISO**Irce: NOAA-ESRL; Scripps Institution of Oceanography; Le Quéré et al 2016; Global Carbon Budget 2016 **Observed emissions and emissions scenarios**

GLOBAL

The L

CARBON PROJECT

The emission pledges to the Paris Agreement avoid the worst effects of climate change (4-5°C) Most studies suggest the pledges give a likely temperature increase of about 3°C in 2100

Emission reduction options

Main approaches:

- Pre-combustion measures: improved efficiency of energy production, coal washing, substitution of fuels,
- Post-combustion measures: CCS
- Co-control of climate gases and air pollutants (GHGs, PM, SO₂, NOx)
- Wider use of renewable energy sources

Selection of appropriate measures depend on:

- Current technology (different measures may be most cost efficient in different regions)
- Rules, regulations etc.
- Economic and social factors

Coal use in China, India and South Africa

Power generation:

	Subcrit PCC	SC/USC PCC	FBC	IGCC
China	X	x	X	X
India	X	(X)	x	X
South Africa	X	(X)		

Sipat power plant, India

Shanghai, 900 MW SC unitsFuyang Huaren, 660 MW SC units

© IEA Clean Coal Centre

www.iea-coal.org.uk

Nordjylland 3, Denmark – highlights

USC, tower boiler, tangential corner firing, int. bituminous coals, cold sea water

Most efficient coal-fired plant

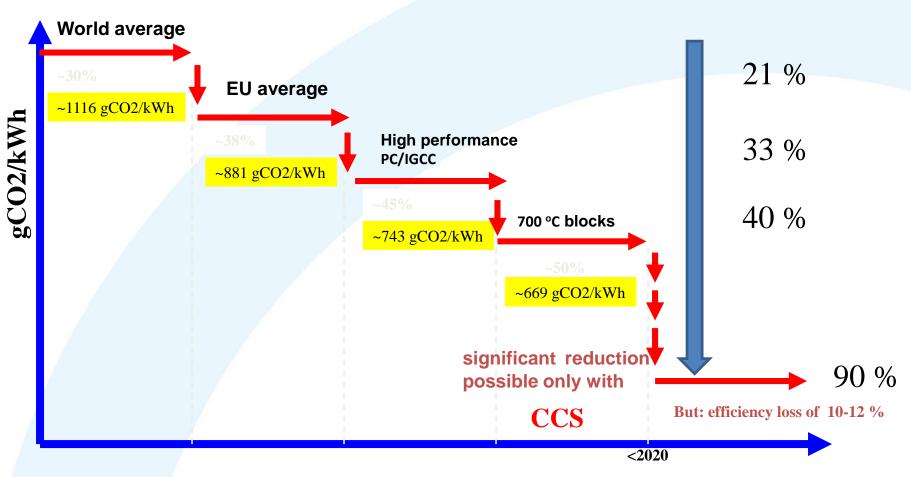
Operating net efficiency 47% LHV, power only mode/44.9% HHV (not annual)

High steam conditions 29 MPa/582°C/580°C/580°C at boiler by early use of new materials (P91)

Large number of feedwater heating stages

Double reheat has prevented LP blade erosion

Very low emissions and full waste utilisation


NOx abatement Combustion measures and SCR

Particulates removal ESP

Desulphurisation Wet FGD

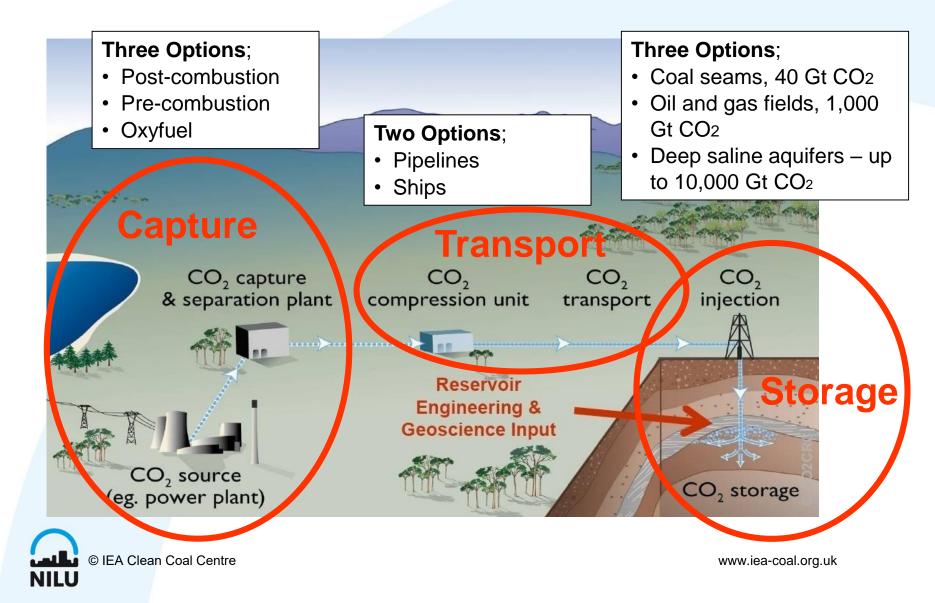
CO₂ emission reduction as a result of technological changes

Increase of efficiency results in significant effects, but only CCS leads to real CO₂ emission reduction.

Sorbent based on ash from coal power station

NI

Applying LCA to CCS Some initial observations...


- CCS has substantial potential to reduce point emissions of CO₂ and thus human induced climate change.
- CO₂ capture requires energy, chemicals and technical infrastructure. The capturing process also leads to air emissions and waste which needs to be compared to the benefits of reducing climate gases and other emissions.
- Technologies designed to reduce close to 90% of the CO2 from flue gas, reduces in reality 74-84 % for coal combustion plants.

Three parameters have been identified as having significant impacts on CCS:

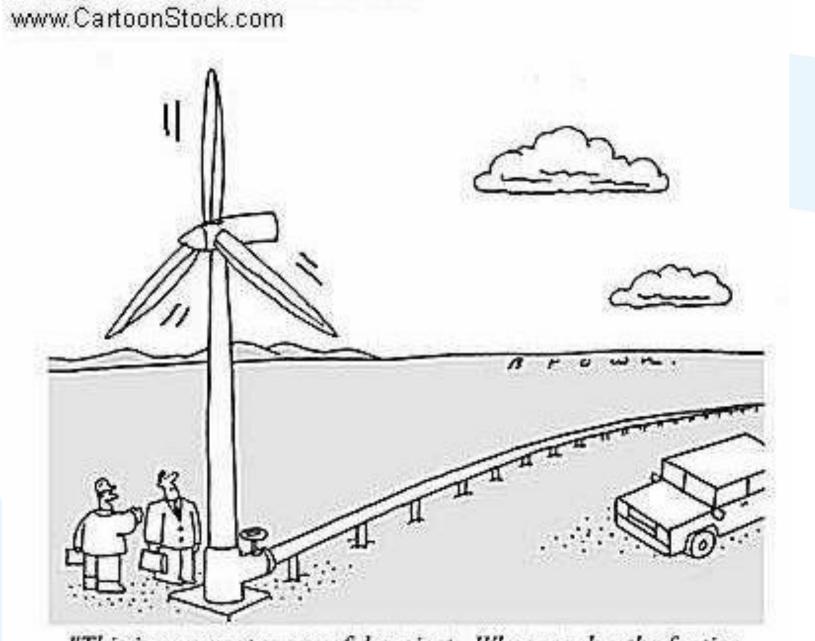
- Power plant efficiency and energy penalty of the capture process
- CO₂ capture efficiency and purity
- Fuel origin and composition

Carbon capture and storage

Economically efficient and socially accepted CCS/EOR processes

PRO_CCS:

Source:Bellona.org


Source:subseaworldnews.com

LCA will focus on the comparison between shipping and pipelines for CO₂ transport to storage sites

LCA will also compare post-combustion carbon capture in CHP/PC power plant or an industrial installation, and without CO₂ capture

"This is our most successful project. When we dug the footing for the wind turbine, we struck oil."

NIL

Background

http://www.undeerc.org/pcor/household-energy/electricity/

http://www.fires-gas.com/energy-ideas/different-types-of-fossil-fuels.html

http://www.economiccalendar.com/2016/08/06/crude-oilprices-stabilize-after-worst-month-in-a-year/

2020 Climate and Energy Package

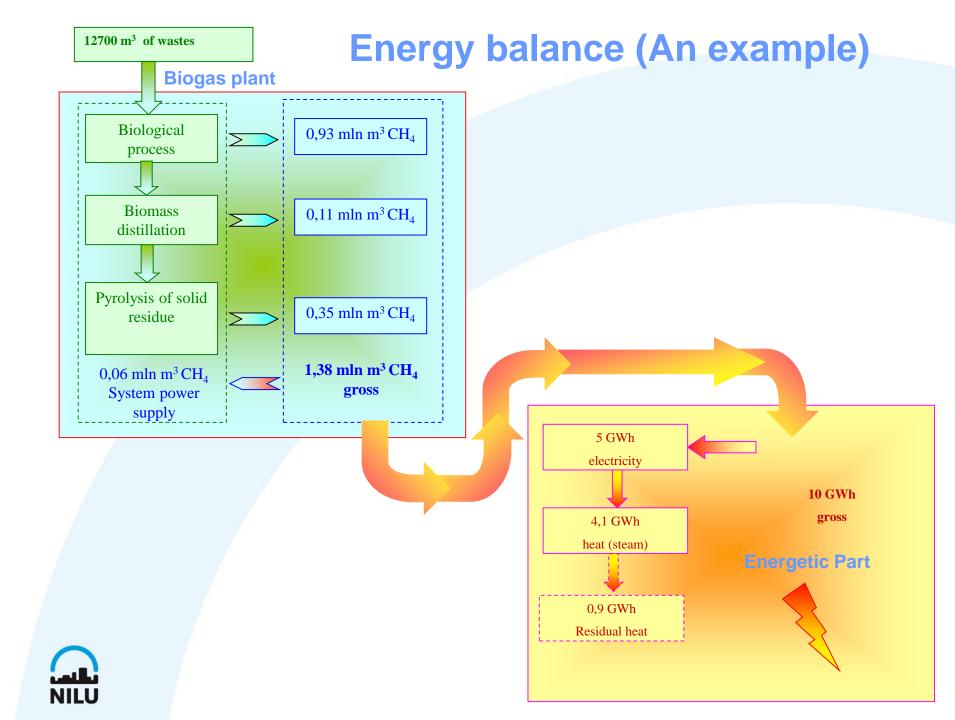
20 % share renewables by 2020

2030 Climate and Energy Framework

At least 27 % share renewables by 2030

http://www.iea.org/topics/renewables/subtopics/wind/

http://www.ieapower.com/solar-power-installation/


https://www.iea.org/topics/renewables/subtopics/hydropower/

Energy				Range for total system LCOE (\$2013 per MWh)		
source	Plant type			Average	Maximum	
Fossil fuels	Coal	Conventional	87.1	95.1	119.0	
		Advanced	106.1	115.7	136.1	
		Advanced with CCS	132.9	144.4	160.4	
	Natural gas	Conventional combined cycle	70.4	75.2	85.5	
		Advanced combined cycle	68.6	72.6	81.7	
		Advanced with CCS	93.3	100.2	110.8	
	Nuclear	Advanced	91.8	95.2	101.0	
Renewable	Geothermal		43.8	47.8	52.1	
	Biomass		90.0	100.5	117.4	
	Wind	Onshore	65.6	73.6	81.6	
		Offshore	169.5	196.9	269.8	
	Solar	PV	97.8	125.3	193.3	
		Thermal	174.4	239.7	382.5	
	Hydroelectric		69.3	83.5	107.2	

Table 9.4 Cost comparison of electricity generating technologies. Adapted from the U.S. EIA, Annual Energy Outlook (2015)

Note: The values for each source are given for a different capacity factor

Can coal combustion be environment friendly? YES, it can, BUT:

- New, highly efficient combustion technologies are needed to produce electricity and heat (new blocks with supercritical vapor conditions, cogeneration, hybrid systems, etc).
- Carbon dioxide emissions should be reduced through the implementation of pre-combustion, post-combustion methods, or combustion in oxygen.
- CCS technologies should be implemented mainly in new power stations (storage of carbon monoxide should be resolved).
- Co-control technologies should be employed to reduce emissions of various contaminants, such as mercury (e.g. various adsorbers).
- Cost of the above technologies should not lead to deterioration of competitivness and relocation of energy production outside EU, where standards are less restrictive.

Emission reductions are achievable

Thank you for your attention

